第15回 日本の暦:季節を表す二十四節気
第14回 革命暦とグレゴリオ暦
第13回 グレゴリオ暦:ユリウス暦の改良
第12回 中世ヨーロッパの暦 : アルマナックの普及
第11回 メトン周期の正体
第9回 春分点移動とヒッパルコス
第10回 古代の時間
第8回 暦の伝播:オリエントの国々へ
第7回 古代ギリシアの暦:歴史の父ヘロドトスと暦
第6回 メトン周期:天文学者メトンと閏月
第5回 ローマの暦:カエサルが導入したユリウス暦
第4回 古代エジプトの暦:シリウスと暦の物語
第3回 メソポタミアの暦:太陰太陽暦
第2回 星座は暦で時計だった:シュメールで誕生した星座
第1回 暦の始まり ー 科学は天文学から始まった ー
『チ。』☆ ガリレオ・ガリレイ と サン・マルコ広場の鐘楼と... @ヴェネツィア
インテリの苦悩(笑)
ガリレオの実験 – 大砲の水平発射・振り子の実験
落下の実験
科学の時代の始まり
ガリレオ裁判の真相[vol.5]-ガリレオは地動説を証明したか?
ガリレオ裁判の真相[vol.3]-天動説と地動説
ガリレオ裁判の真相[vol.2] 天体の観測
イタリア旅行記⑤~4日目(8月30日)後編フィレンツェ&ピサ
「チ。―地球の運動について―」の魅力とは?歴史×科学の名作を徹底解説!
「ガリレオの主題によるファンタジー」世界初演になります。
「沈黙のパレード」
沈黙のパレード
壇れいさんだから金麦?実におもしろい🍺土曜プレミアム・映画「沈黙のパレード」◆ガリレオ・映画最新作!地上波初放送
沈パレ楽しみ!!
数学Webマガジン・マテマティカ [ Mathematica ]
数学の起源とされているギリシア数学、さらに時代を遡り、エジプト数学やバビロニア数学...。『数』がどのようにうまれ、確立されていったのか、数と歴史に関する様々なテーマを取り上げます。
データサイエンティストがさまざまな分野のデータを科学するブログです。 Season1では「株価チャートをフーリエ変換してみた」です。 英語版もあります。
高校生・大学生・社会人向けに数学の楽しみ方を解説します。 数学ってなんの役に立っているの? 数学の研究って何が面白いの? 数学の問題ってどうやって解くの? これらの疑問に答えます!
算額(その1626)長野県下高井郡木島平村往郷水穂神社寛政12年(1800)中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:長方形,菱形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に,大小の矢によって菱形ができている。直長が480寸,直平が360寸,大矢が400,小矢が351寸のとき,菱面を求めよ。注:直長,直平は長方形の長辺と短辺,菱面は菱形の一辺の長さ。大矢,小矢は図のDE,BC三角形ACBにおいて,∠ACBをθとして,第二余弦定理を使う。三角形BDEにおいて,∠BDEを180°-θとして,第二余弦定理を使う。この2つの方程式から,菱面とθを求める。include("julia-source.txt");#j...算額(その1626)
算額(その1625)長野県下高井郡木島平村往郷水穂神社寛政12年(1800)中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:円多数,正三角形,斜線#Julia,#Julia,#SymPy,#算額,#和算,#数学正三角形の中に斜線と数個の等円を容れる。左右の等円の個数が与えられたとき,等円の直径を求める術を述べよ。正三角形の一辺の長さをa斜線と正三角形の右側の斜辺との角度をθ等円の個数と直径をm,n,rとおき,以下の連立方程式を解く。eq1,eq2は斜辺の長さを表す式がaに等しいというものである。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de...算額(その1625)
算額(その1624)長野県上水内牟礼村牟礼渋薬師堂嘉永2年(1849)大久保善賢氏保管中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:球5個,回転楕円体,3次元#Julia,#Julia,#SymPy,#算額,#和算,#数学回転楕円体の中に,甲球2個,乙球3個を容れる。回転楕円体の長径と短径が与えられたとき,甲球の直径を得る術を述べよ。回転楕円体の長径,短径を2a,2b甲球の半径と中心座標をr1,(0,0,z1)乙球の半径と中心座標をr2,(b-r2,0,0)甲球と回転楕円体のx-z平面上の交点座標を(x0,0,z0)とおき,以下の連立方程式を解く。まず,eq1を解きr2を求める。次いで,eq3,eq4,eq5を解き,z1,x0,z0を求める...算額(その1624)
物理学で言う「光円錐」と言う、考え方を整理する方法…なかなか難しい
皆さん こんにちは、時空 解です。今日は「のもと物理愛」動画の中の・【宇宙の果て】宇宙の事象の地平面を視聴していました。その中に出てくるのですが「光円錐」と言う、いわば "時間と事象の関係を考えるのに使う方法" が出てくるのですが。うーむ…残念ながら今回の動画では、良く理解できませんでした。( ^^;例えば100光年離れている星は、100前の姿であることは分かります。それに、宇宙の遠く離れた...
9 時起床. 午前中は語学の勉強をする. 久し振りに勉強したので疲れてしまった. 昼寝をする. 夜は以前のアパートの大家さんと駅の近くで飲んだ. 駅の近くの魚が売り物の居酒屋. 金目鯛の煮付け, さざえのつぼ焼き, すずきのお造りなどを食べる. 美味しかった. 魚料理を売りにしているのもよくわかる. 元大家さんからは駅と駅前商店街の昔の姿, 変化について聞いた. 活気があった頃の様子など面白かった. 遅…
朝の鬱が辛い. 回復はしてきていると思うのだが, 目覚めた時のぼんやりと灰色な気持ちはどうにもしんどい. これから先やりたいことを手帳に書き出してみる. 数学の勉強, 語学の勉強, 料理の上達, 運動の習慣など. いくつか挙げることはできたが, 今の自分にできるだろうか. 何より, その前に部屋いっぱいの段ボール箱を片付けなければならない. 8 月末に現在のアパートに引っ越してきてから, 大量の段ボール箱に埋も…
算額(その1631)~落書き帳「○△□」~940.『算法天生指南』巻之二(その12)http://streetwasan.web.fc2.com/math20.05.03.htmlキーワード:円3個,長方形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に甲円,乙円,丙円を容れる。甲円の直径が12寸,乙円の直径が9寸のとき,丙円の直径はいかほどか。算額(その1630)で半円だったものが円になっただけで,本質的には同じ問題である。甲円の半径と中心座標をr1,(x1,r1)乙円の半径と中心座標をr2,(r2,r2)丙円の半径と中心座標をr3,(x3,2r1-r3)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txt...算額(その1631)
スキャナーが重送を起こしました…でもメンテ部品があるんですね
皆さん こんにちは、時空 解です。昨日は購入した物理学の演習書を電子書籍化するべく、まずはスキャナーに通せるようページをバラバラにしたんですよね。裁断機でガチャン! (下記は私が持っている裁断機と同等品)・DURODEX 自炊裁断機 ブラック 200DX新しい書籍なのにちょっともったいない気もしましたけどね。( ^^;でも、「よし、さっそくスキャン…」と勇んで下記のスキャナー (下記は私が持っている物の新モデル) で作業を始め...
算額(その1630)福島県三春町大字七草木字松山(旧七草木村)若草木神社明治11年(1878)~落書き帳「○△□」~927.『算法天生法指南』巻之二(その5)http://streetwasan.web.fc2.com/math20.04.25.2.htmlキーワード:円2個,半円,長方形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に大半円,中円,小円を容れる。長方形の短辺の長さが与えられたとき,中円と小円の直径を(単に数値として)かけ合わせた数を求める術を述べよ。大円の半径と中心座標をr1,(x1,r1)中円の半径と中心座標をr2,(r2,r2)小円の半径と中心座標をr3,(x3,2r1-r3)とおき,以下の連立方程式を解く。include("julia-source.tx...算額(その1630)
Melodics(460日目): Poker Face - Baseline (Grade 3)
Finger Drum: Poker Face - Baseline (Grade 3) Poker FaceがPlatinum perfectになっていなかったので再挑戦。☆☆☆になった。 www.youtube.com 本日5分実施せずに達成できてしまったのでもう一曲。この曲のbackingが好き。 www.youtube.com
慣性モーメントとは物体(剛体)の回転のしづらさ、回りだす変化のしにくさを示す物体の物理的な特性のことになります。またさらに別の言い方をすれば回転の方程式といえるかもしれません。このブログは慣性モーメントに的を絞ったサイトになります。
中学受験算数から中学数学・高校数学、そしてその先の高等数学について例題なども交えながら網羅したサイトです。このサイトだけで一通りの知識と問題解決力が身につくように作り込んでいます。
「科学ブログ」 カテゴリー一覧(参加人数順)